
Making Links on Your Web Pages Last Longer Than You

Ayush Goel
University of Michigan

Jingyuan Zhu
University of Michigan

Harsha V. Madhyastha
University of Michigan

Abstract
It is common for the authors of a web page to include links
to related pages on other sites. However, when users visit a
page several years after it was last updated, they often find
that some of the external links either do not work or point to
unrelated content. To combat these problems of link rot and
content drift, the solution used today is to capture a copy of
the linked page when a link is created and serve this copy to
users who choose to visit the link.

We argue that this status quo ignores the reality that one
does not always link to a page in order to point visitors to the
content that existed on that page when the link was created.
The utility of linking to a web page by simply directing users
to that page’s URL is that they can benefit from any updates
to the page’s content (e.g., corrections to news articles and
new comments on a blog post) or access rich app-like func-
tionality on the page (e.g., search). In this paper, we present
a sketch of what it would take to make web links resilient
while accounting for the dynamism of web pages.

CCS Concepts
• Information systems→ World Wide Web;

Keywords
Web Link Persistence, Web Archives
ACM Reference Format:
Ayush Goel, Jingyuan Zhu, and Harsha V. Madhyastha. 2022. Mak-
ing Links on Your Web Pages Last Longer Than You. In The 21st
ACM Workshop on Hot Topics in Networks (HotNets ’22), November
14–15, 2022, Austin, TX, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3563766.3564103

1 Introduction
When we write on any topic or produce any new content, we
typically build on the work of others. For example, authors of
books and research papers include citations to support their
claims and to refer readers to relevant prior work. Similarly,
software developers link to libraries written by others, so as
to not have to implement all functionality from scratch.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564103

In the context of the web, authors of web pages often link
to pages hosted on other sites in order to point visitors to
related information and services [20]. When an author of a
page wishes to link to another page, they do so by including
the URLu for the latter in the source code of their page.When
any user chooses to follow this link, the user’s browser loads
the page that exists at u.

While we take this modus operandi on the web for granted
today, linking to a page using that page’s URL results in two
significant problems over the long term.
• Link rot. Any citation to a book or paper includes the
title and list of authors, and a reader is free to look up
a copy in any library. In contrast, a link to a web page
mentions the specific hostname and path where the page
is hosted. As a result, several years after a link is created, it
is often the case that requests to the specified URL results
in an error (e.g., failed DNS resolution or ‘Page not found’
HTTP 404 response) because there is no longer any page
at that URL.

• Content drift. Even if a web page does exist at the URL
specified in a link, the content at that link might have
significantly changed. Unlike books and research papers,
whose content is static, any website is free to vary its
response across multiple requests to the same URL on its
site. Consequently, when a user visits an old page and
follows a link on it, they might find that the linked page
contains unrelated information because the content at a
specific URL often significantly diverges over time.
Prior studies have found that both problems commonly

occur across the web [13, 16, 18, 19, 22]. For example, millions
of external links included in Wikipedia articles no longer
work [6, 14], and 3 out of 4 references in a corpus of 240
thousand pages exhibited content drift [15]. The net result is
that the work that authors of web pages put into identifying
which external pages they should link to is going to waste
over time. In turn, users end up missing out on the carefully
selected context and pointers to related information/services
that web publishers intended to provide them.
To make external links on web pages resilient to link rot

and content drift, the state-of-the-art solution is to capture
a snapshot of every linked page when a link is created and
to serve this page snapshot to users who choose to visit this
link in the future. For example, when a web publisher wishes
to link to a page, they can ask a service like perma.cc [7, 21]
to crawl the page and store a copy. The publisher can then
link to this stored page snapshot, which remains unmodified
over time. By storing multiple copies of every page snapshot
across many locations, services like perma.cc ensure that at
least one copy will likely exist even when the original page
is no longer on the web.

https://doi.org/10.1145/3563766.3564103
https://doi.org/10.1145/3563766.3564103

We observe that this reliance on static page snapshots is
based on the assumption that the purpose of linking to a
page is to point users to the content that existed on that
page at the time the link was created. This assumption is
invalid in a number of cases. First, many updates to pages
are critical for users to see, e.g., corrections added to news
articles or updates appended to a blog post about an ongoing
investigation. Second, a page snapshot cannot preserve any
functionality on the page that relies on client browsers inter-
acting with the page’s origin servers, e.g., on any snapshot
of a product page, users cannot buy the product. Moreover,
when an author links to a page that they know significantly
changes over time (e.g., a page that lists the top 10 movies of
the month), they are explicitly choosing to point any user to
whatever content happens to exist on the page at the time of
the user’s visit. After all, unlike software applications, there
is a reason why web links do not refer to a specific version
of the page they link to.
In this paper, we ask: what would it take to enable web

publishers to protect the links on their pages from link rot
and content drift, without robbing users of page functionality
or exposing them to stale information? Like current solutions,
we seek a backward-compatible approach that requires only
the sites who wish to fortify the links on their pages to make
any changes. Our proposal is based on three principles.
1. Cope with site reorganizations. When a link no longer
works (i.e., requests to the specified URL return an error),
a previously captured snapshot of the linked page should
be used as a last resort. Often, a page does not exist at its
original URL only because the page has been moved and it
now resides at an alternate URL. In such cases, discovering
the page’s new URL and directing users to it will help ensure
that any critical functionality on the page is still usable.
2. Direct users to latest relevant page snapshot. When
a page no longer exists anywhere on the web and using
a snapshot of it is the only recourse, using the snapshot
captured when the page was linked to is seldom the right
thing to do. Instead, to ensure that users can see all relevant
updates to the page, it is necessary to repeatedly capture new
snapshots of every linked page. When a user wishes to visit
a link that does not work now, they should be directed to
the most recent non-erroneous snapshot of the linked page
which reflects the original purpose of the link.
3. Embrace diversity of web pages. Lastly, in order to
identify whether a page’s content has drifted or to select the
latest page snapshot in which its content had not drifted, it
is insufficient to use a one-size-fits-all solution. Web pages
should be classified based on the purpose they serve – e.g., in-
formational, navigational, and functional [11] – and handled
accordingly.
In the rest of the paper, we discuss the shortcomings of

the current page snapshotting based solutions in more detail
(§2), outline our envisioned approach and the challenges that
need to be addressed to realize it (§3), and finally describe
potential solutions to these challenges (§4).

2 Problems with status quo

Web publishers who wish to protect the external links they
include on their pages often rely on third-party snapshotting
services offered by perma.cc and other web archives [4, 5].
In this section, we describe the various shortcomings posed
by this approach of relying on static page snapshots to cope
with link rot and content drift.
Dataset. To support our arguments, we analyze all external
links on a corpus of web pages which were last updated in
2021 or earlier but are still relevant today. We assemble our
corpus as follows. On June 1, 2022, we queried the Google
Trends API [3] and obtained the 128 search queries that
it returns. We issued each of these queries to Google and
crawled the top 20 results for every query, resulting in a total
of 2,560 pages. On each of these pages, we pruned out the
boilerplate content (e.g., recommended stories, navigation
bar, header and footer), if any, using Chrome’s open source
DOM distiller [1]. From the remaining part of the page, we
extracted all outgoing links to third-party domains.

After ignoring pages on which no external links appear in
the non-boilerplate portion of the page, we sample at random
100 pages which were last updated in 2021 or earlier. The
fact that these pages appear in the top 20 results of popular
queries shows that they are still relevant today, thereby mak-
ing it important to preserve the links on these pages. Our
corpus of 100 web pages cumulatively contain 2,273 external
links. We manually examined all of these links and classified
each link into one of the following three categories [11].
• Informational: The content on the linked page is largely
static, and the purpose of the link is to point users to the
information contained on the page.

• Navigational: Flux in the linked page’s content is ex-
pected; the intention underlying the link is to point users
to a page from where they can find other relevant pages.

• Transactional: The link helps users discover some app-
like functionality that is offered on the linked page.

Transactional pages become dysfunctional when ac-
cessed via snapshots. 2% of all external links in our dataset
were transactional, and 21% of the pages in our corpus con-
tained atleast one such link. For example, the civilian ap-
plication process page on the US Capitol Police website
https://www.uscp.gov/careers/civilian-application links to
their career portal https://uscp.csod.com/ux/ats/careersite/1/
home?c=uscp using which civilians can read various job de-
scriptions and also apply to them, by uploading the necessary
documents. Such transactional pages become non-functional
when accessed via a static page snapshot, since interactions
with the page’s origin servers no longer work.
Page snapshots poorly represent navigational pages.
On the other hand, 39% of the external links were naviga-
tional, and 40% of the pages had such links. For example, to
point to a partnership with the Centre for Risk Studies at
the University of Cambridge, the page at https://www.wtwco.
com/en-US/About-Us/environmental-social-and-governance

perma.cc
https://www.uscp.gov/careers/civilian-application
https://uscp.csod.com/ux/ats/careersite/1/home?c=uscp
https://uscp.csod.com/ux/ats/careersite/1/home?c=uscp
https://www.wtwco.com/en-US/About-Us/environmental-social-and-governance
https://www.wtwco.com/en-US/About-Us/environmental-social-and-governance

links to the Centre’s home page, which is at https://www.jbs.
cam.ac.uk/faculty-research/centres/risk/. Since the content
on such navigational pages changes often, a page snapshot
that was captured when the page was originally linked to
is likely to contain stale information, e.g., the latest media
coverage of the Centre’s work.
Informational pages are not static. Finally, 59% of links
were informational, and 73% of pages had at least one such
link. In such cases, relying on an old snapshot of a linked page
can result in users missing out on critical updates. For ex-
ample, the page at https://kisscincinnati.iheart.com/featured/
josh-martinez/content/2021-11-06-report-astroworld-deaths-
were-result-of-a-targeted-attacks-with-syringe/ includes a
link to https://www.tmz.com/2021/11/06/travis-scott-astroworld-
concert-stampede-dead-drake/, an article about a targeted
attack at a Houston music festival. Internet Archive’s copies
of this article reveal that, if a user relied on a snapshot cap-
tured when this link was created, it would be missing critical
updates made to the article thereafter based on comments
from Houston’s Police Chief.

3 Envisioned approach

To overcome the above-mentioned limitations of existing
solutions for fortifying web links, one might be tempted to
rethink how pages on the web link to one other. For example,
creators of the web had considered bi-directional links [9],
which would enable any site to notify other sites which links
to its pages of any updates. Similarly, prior work has pro-
posed content-based networking [12] where web documents
are identified and linked based on a signature of their con-
tent, rather than where they are hosted. However, with any
such proposal to rearchitect the web, a site that seeks to
shield its users from link rot and content drift would be at
the mercy of when other sites adopt the proposed changes.
Therefore, in keeping with existing solutions, our pro-

posed link management service, DuraLink, requires changes
only on any site that seeks to protect the links on its pages.
Like existing services such as perma.cc,DuraLink will require
a web publisher to register all linked URLs with it whenever
a page is created or updated. For any link, DuraLink will
allow web publishers to specify whether only that link need
be protected or all links of a certain depth starting from the
specified link need to be preserved. Thereafter, DuraLink’s
operation will differ from existing services primarily in three
ways. Figure 1 summarizes the high-level decision tree that
dictates where DuraLink will redirect a user to when the
user chooses to visit a link registered with it.
Repeated snapshotting. First, instead of taking a single
snapshot of a link when it is first created, DuraLink will
repeatedly recrawl every link at regular intervals. How fre-
quently a particular page should be recrawled can be guided
by the rate of content flux on the page, which can be de-
termined based on the first few snapshots of the page. The
benefit of repeatedly capturing new snapshots of any linked
page is that, when the page is no longer on the web,DuraLink

Redirect to alias
or same URL

Link
broken?

User clicks on link

Alias exists? YES

NO

Content
drifted?

NOYES

NO

Redirect to last
page snapshot YES

Figure 1:When a user chooses to visit a link, logic that Du-
raLink will use to identify where to direct the user to.

will be able to direct users to the latest snapshot which pre-
serves the intent of the link, instead of the original snapshot,
which might contain stale information.
Alias detection. When the URL specified in a link ceases
to function, it is not always the case that the page at that
URL no longer exists on the web. It can often be the case
that the site hosting that page has been reorganized and the
page now resides at an alternate URL, which we refer to as
an alias of the original URL. Table 1 presents some examples.
Therefore, when a user chooses to visit a link that is now
dysfunctional, DuraLink should serve a previously captured
snapshot only if a functional alias for the link does not exist.
Doing so is particularly important for transactional pages,
since the functionality on those pages will not work on their
snapshots. Note that, in order to honor the choice made by
an author regarding which pages to link to, DuraLink should
redirect any broken link only to the new URL for the same
page previously available at that link, not to an alternate
page with similar content/functionality.
Content drift detection. Finally, if either a linked URL is
not broken or if an alias for it exists, DuraLink must exam-
ine if the content on the live page has drifted sufficiently
that the original intention associated with the link is now
violated. To detect content drift, DuraLink will have to take
into account both the category the linked page belongs to
(i.e., informational, navigational, or transactional) and the
context associated with the link on the source page (e.g.,
anchor text and the content surrounding it). Once DuraLink
determines that the content at a target link has drifted, it can
stop recrawling the link and serve its last snapshot of that
page henceforth.

4 Research challenges and potential solutions

To realize the above vision, we identify the following three
challenges.
• DiscoveringURL aliases.When requests to a previously
functional URL begin to fail, how to tell if the page that
was available at that URL still exists elsewhere on the

https://www.jbs.cam.ac.uk/faculty-research/centres/risk/
https://www.jbs.cam.ac.uk/faculty-research/centres/risk/
https://kisscincinnati.iheart.com/featured/josh-martinez/content/2021-11-06-report-astroworld-deaths-were-result-of-a-targeted-attacks-with-syringe/
https://kisscincinnati.iheart.com/featured/josh-martinez/content/2021-11-06-report-astroworld-deaths-were-result-of-a-targeted-attacks-with-syringe/
https://kisscincinnati.iheart.com/featured/josh-martinez/content/2021-11-06-report-astroworld-deaths-were-result-of-a-targeted-attacks-with-syringe/
https://www.tmz.com/2021/11/06/travis-scott-astroworld-concert-stampede-dead-drake/
https://www.tmz.com/2021/11/06/travis-scott-astroworld-concert-stampede-dead-drake/

Domain Old URL New URL

edx.org
www.edx.org/blog/edx-welcomes-library-alexandria blog.edx.org/edx-welcomes-library-alexandria
www.edx.org/blog/art-poetry-outside-classroom blog.edx.org/art-poetry-outside-classroom
www.edx.org/blog/columbia-university-joins-edx blog.edx.org/columbia-university-joins-edx

reviewjournal.com

lvrj.com/news/16976731.html reviewjournal.com/news/patients-vent-emotionsTitle: Patients vent emotions
lvrj.com/news/7358326.html reviewjournal.com/news/clinton-has-huge-lead-in-NevadaTitle: Clinton has huge lead in Nevada

Table 1: On a couple of sites, examples showing the patterns in how broken URLs map to their aliases.

same site? On the one hand, unlike images, videos, and
other static files [8], the hash of a page’s content is not
a unique identifier for it, since a page’s content can vary
over time. Crawling the entire site to discover the page’s
new location is impractical. On the other hand, even if we
find a page whose content is similar to the last captured
snapshot of the URL, it might be a different page than the
one that was originally linked to.

• Detecting content drift given different page types.
To detect whether the content on a page has drifted, it
is insufficient to merely always compare the difference
between the current version of the page and its originally
captured snapshot. As mentioned earlier, it is perfectly
acceptable for a linked page to be updated in a number
of cases. Detecting content drift requires a precise un-
derstanding of the intent of the author who included a
third party link on their page and whether changes on the
linked page violate the purpose of the link.

• Seamless integration into the web. Enabling our envi-
sioned approach calls for modifications to how websites
operate. The web stack has a number of parts that could be
modified, e.g., content management systems, page serving
infrastructure, and client-side JavaScript. It is critical to en-
able link resilience in a manner that minimizes the burden
on website providers and optimizes user experience.
Next, we elaborate on why each of these challenges is

non-trivial to address, and we outline potential solutions.

4.1 Re-discovering pages after site reorganizations

When DuraLink’s attempt to recrawl a URL registered with it
fails, it will attempt to find an alias for the URL, i.e., the new
URL at which the same page now exists. The most straight-
forward way to do so is by following the strategy that a
human would use. DuraLink could query web search engines
such as Google or Bing using keywords extracted from its
last successfully crawled snapshot and restrict results to the
same site as the original URL. For an informational page,
top-N words from the page’s content [17] are likely to suf-
fice for the search query. Whereas, for navigational pages,
querying with the page title is likely to work better. If any of
the search results has a similar title or content as DuraLink’s
last snapshot for the URL, it can be considered the alias.
However, such an approach is fundamentally limited in

its accuracy. The content/title between DuraLink’s last snap-
shot for a page and a current page on the same site might
match only because they happen to be two similar pages.

For example, the Internet Archive reveals that the page
previously available at http://www.ew.com/article/1993/10/
29/unplugged, which is now a broken URL, had the title
“Unplugged". The page at https://ew.com/article/2002/01/07/
unplugged/ today has the same title. It is clear from manual
inspection that these are two different pages. But, by com-
paring the page previously available at a now dysfunctional
URL and a page currently available on the same site, how
can an algorithm reason about whether these two pages are
the same?
Patterns in URL changes. We posit that, to automate the
accurate identification of aliases for broken URLs at scale,
the key is to leverage the following property: when a site is
reorganized, it is rarely the case that a single page is moved;
rather, a collection of pages with similar pages end up with
new URLs. Therefore, if a broken URL has an alias, it is
usually the case that other similar URLs (e.g., those in the
same directory) also have aliases. Consequently, there is
usually a pattern in how the old URLs for pages on a site
map to their corresponding new URLs (i.e., their aliases).
Leveraging patterns for accuracy. We therefore argue
that one can confirm that a URL u ′ is an alias of u only if
the transformation from u to u ′ is the same as that from
other dysfunctional URLs similar to u to their corresponding
aliases. For example, we can confirm that the two URLs in
the first row of Table 1 are the old and new URLs for the
same page because other URLs on edx.org have similarly
transformed to their new versions, as shown in the remaining
rows of the table. This transformation can often be fairly
complex, e.g., as also shown in Table 1, the site previously
hosted at lvrj.com has now moved to reviewjournal.com
(which we can confirm because the home page for the former
redirects to the home page for the latter) and the new page
URLs contain page titles in place of a unique page ID.
In order to leverage these URL replacement patterns for

confirming the accuracy of any particular alias, DuraLink
will have to discover the aliases for other similar URLs.
Therefore, when a link is registered with DuraLink, it must
also identify a few similar URLs and capture snapshots of
those pages. These URLs might have already been regis-
tered with DuraLink as part of other links. If not, URLs
similar to u can be discovered in several efficient ways: 1)
on the page linked from u, e.g., many articles have a “re-
lated topics" section which links to URLs in the same direc-
tory; 2) the prefix of u ignoring the portion after the last
’/’ is often a navigational page which links to many URLs

edx.org
reviewjournal.com
http://www.ew.com/article/1993/10/29/unplugged
http://www.ew.com/article/1993/10/29/unplugged
https://ew.com/article/2002/01/07/unplugged/
https://ew.com/article/2002/01/07/unplugged/
edx.org
lvrj.com
reviewjournal.com

https://www.nytimes.com/2016/11/14/business/traders-to-compare-notes-with-wall-
streets-richest-investors.html

https://www.ecb.europa.eu/press/calendars/weekly/html/index.en.html

Figure 2: An example of how content drift occurs because a
link refers to specific information on a page that is updated
frequently.

similar to u, e.g., https://abcnews.go.com/US/, the prefix
of https://abcnews.go.com/US/thousands-cattle-dead-amid-
continuing-heat-wave/story?id=85434516, includes links to
many similar URLs; or 3) from a URL prefix based web search.
Thus, when DuraLink obtains an error when it attempts

to recrawl a particular URL, it can try to find the alias not
just for that URL but also for other similar URLs that it has
previously identified. For each of those URLs, DuraLink’s
web search using the title/content from its last successful
snapshot will yield a number of candidate aliases. By deriving
the transformation function from each URL to each of its
candidate aliases, DuraLink can identify that transformation
which is common across all of the similar URLs.
Leveraging patterns for efficiency. Beyond helping con-
firm the accuracy of discovered aliases, the patterns that
DuraLink learns from old to new URLs can also help improve
its efficiency. After having attempted to discover aliases for
a number of broken URLs in a particular site/directory, Du-
raLink can learn the manner in which this site has modified
the URLs for its pages. Thereafter, for any other broken URL
on the site, DuraLink can simply use the patterns it has
learned to infer the corresponding alias.

4.2 Detect content drift for different page types

Once DuraLink identifies a broken URL’s alias or, if no alias
exists and a snapshot of the linkmust be used,DuraLinkmust
determine whether the content at the linked page has drifted.
Prior work has either relied on manual analysis to identify
content drift [23] or considered any significant change to
the linked page as content drift [15]. The former approach
cannot be employed in a system and the latter is prone to
false declarations of content drift.

To understand how content drift occurs in practice and
what approach is necessary to accurately identify it in an au-
tomated manner, we conducted the following study. Instead
of using our earlier corpus from §2, which mostly contained
pages created in the last few years, we recreated the study
from[23] at a smaller scale. For each year from 1996 to 2019,
we crawled 50 articles at random from nytimes.com. For each
article, we extracted all outgoing links to external domains,
and focused only on links that contained a path in the URL.
We were left with a total of 780 external URLs, spanning 463
domains originating from 291 NYTimes articles.
We manually categorized each of these links as having

suffered content drift or not as follows. From the NYTimes
page containing a URL u, we read the text surrounding the
anchor text ofu in order to understand the author’s intention
for including that particular URL. Then, we visited the page
hosted at u, and read through the page content to determine
whether the relevant information is still on the page.

Ignoring the 200 URLs that had suffered from link rot, we
observed that 53 URLs (9.1%) out of the remaining 580 URLs
had undergone content drift, a fraction comparable to the
one observed by prior work [23]. We observe that all of these
cases of content drift can be categorized into one of two
cases. First, most (68%) cases of content drift correspond to
soft-404s, i.e., it is not the case that the page at the original
link has been modified; rather, the site is serving an incorrect
response. Second, the remaining cases of content drift (32%)
were cases where a web page’s author linked to a page that
is expected to change over time, but the context associated
with the link refers to specific information that existed at the
time the link was created; Figure 2 shows one such example.
These findings suggest that identifying content drift on

the web is likely easier than evident from prior work [15, 23].
Though on a small dataset, our analysis suggests that most
instances of what appears content drift instead corresponds
to link rot. To automate the detection of soft-404s, DuraLink
can compare the response it receives for a particular URL on
a site to that site’s responses for other similar URLs [10], e.g.,
if a site redirects a number of similar URLs to the same URL,
that shows that all of these redirections are broken.

To identify remaining instances of content drift, DuraLink
would need to employ a binary classifier. Given a link to
a page whose content is known to change over time, the
classifier would take as input the text surrounding the link’s
anchor text and the text on the linked page. The purpose of
this classifier would be determine whether the intention of
the link is to refer to specific information on the linked page
or to simply point visitors to the linked page. If the former,
DuraLink would know that this link is prone to content drift
when the linked page’s content changes.

4.3 Integration with the modern web stack

Lastly, we consider the question of how to integrateDuraLink
into any website.
To see how existing services which are comparable to

DuraLink work, let us consider the example of perma.cc [7].

https://abcnews.go.com/US/
https://abcnews.go.com/US/thousands-cattle-dead-amid-continuing-heat-wave/story?id=85434516
https://abcnews.go.com/US/thousands-cattle-dead-amid-continuing-heat-wave/story?id=85434516
nytimes.com
perma.cc

First-party
web server

DuraLink

GET Request

Response User

Third-party web server

Third-party link

Serve page snapshot, or

redirect to original URL

or its alias Fetch page snapshot

First-party
web server

DuraLink

GET Request

Response User

Third-party web server

Retrieve
updated
links (if
any)

Rewrite
page

Request
linked page

`

Request
linked page

(a) (b)

Figure 3: (a) For a page served by the first-party server, illustration of how user’s visits to third-party links will be served if
DuraLink is used in a manner identical to perma.cc. (b) We instead propose leveraging dynamic generation of HTMLs.

When a web page’s author wishes to link to a URL u, they
submit this URL to perma.cc, which crawls the page at u
and returns a link akin to perma.cc/u. The author then links
to this alternate URL on their page. When users click on
this link in the future, their browser fetches and renders
perma.cc’s snapshot of the page at u.
Problem: Availability/privacy vs. user experience. Du-
raLink could be integrated into any website in a similar
manner (Figure 3(a)) except that, when users visit a link,
DuraLink would use the logic in Figure 1 to determine where
to direct the user to. However, such an architecture would
not be ideal with respect to both availability and privacy. Un-
like perma.cc, which always returns stored page snapshots
DuraLink may forward the user onto the originally linked
URL if there is no link rot or content drift. In such cases,
having DuraLink serve as a relay results in it learning about
users’ browsing activity for no resultant benefit. Moreover,
such links will be inaccessible to users when DuraLink is
down. One could sidestep these problems by having users
always visit the originally linked URL and leave it to them
to invoke DuraLink when they encounter a broken link or
observe content drift. But, that would result in a poor user
experience.
Solution: Dynamic rewriting of HTMLs. To address the
tradeoff described above, we observe that every link on the
page need not have to either always use the original URL
(which punts the detection of link rot and content drift to
users) or always use a URL hosted byDuraLink (whichmakes
it a single point of failure). Modern web servers already
generate dynamic HTML responses. Every page has a HTML
template, which is populated in response to a user request
based on server-side state (e.g., the visitor count of a page),
the user’s cookies, etc. [2].
This dynamic generation of HTML responses facilitates

the server-side integration of DuraLink as follows. When
a web server receives a client’s request for a page, apart
from querying its back-end database for server-side state,
the server can also query DuraLink for how it wishes to

handle every external link on the page. Links that suffer from
neither link rot nor content drift (whichDuraLink determines
offline when recrawling links registered with it) can be left
unmodified. Whereas, links for which DuraLink wishes to
direct users to either an alias or a snapshot can be rewritten
appropriately. As shown in Figure 3(b), when users visit links
on the page, they need to interact with DuraLink only to
fetch page snapshots.
The risk of DuraLink being offline can be mitigated if

several providers independently offer instances of the ser-
vice and publishers register every link with multiple service
providers. In the rare case when all DuraLink deployments
are down, users may temporarily be exposed to broken links
or linked pages whose content has diverged. However, Du-
raLink’s unavailability will have no impact on users’ ability
to visit functional links. Moreover, once a server has learned
from DuraLink that a particular link needs to be rewritten to
point to the link’s alias or a snapshot, the server can cache
this information.

5 Conclusions
On the web, a page can include links to pages in any other
domain. This flexibility, however, comes with the risk that
those external pages may later either no longer exist at their
original URLs or have significantly changed. In this paper, we
highlighted that existing solutions to these problems ignore
the fact that snapshots of web pages are not equivalent to
the original pages: functionality that relies on client-server
interactions do not work and the information they contain
can be stale. To overcome these limitations without having
to redesign the web, we presented our vision for DuraLink,
a service which will serve page snapshots only when ab-
solutely necessary to combat link rot or content drift. We
identified three key enabling capabilities to realize DuraLink:
1) repeatedly recrawl linked pages, 2) when a link ceases to
work, identify whether the page still exists at an alternate
URL, and 3) account for the intent of a link and the category
of the linked page to identify content drift.

perma.cc
perma.cc
perma.cc/u
perma.cc
perma.cc

References
[1] chromium/dom-distiller: Distills the DOM. https://github.com/

chromium/dom-distiller.
[2] EJS – Embedded JavaScript templates. https://ejs.co/.
[3] Google trends API. https://trends.google.com/trends/.
[4] Internet archive. https://www.archive.org/about/.
[5] Library of congress. https://www.loc.gov/web-archives/.
[6] More than 9 million broken links on Wikipedia are now res-

cued. https://blog.archive.org/2018/10/01/more-than-9-million-
broken-links-on-wikipedia-are-now-rescued/.

[7] Perma.cc. https://perma.cc/.
[8] A. Anand, A. Balachandran, A. Akella, V. Sekar, and S. Seshan. En-

hancing video accessibility and availability using information-bound
references. IEEE/ACM Transactions on Networking, 24(2):1223–1236,
2015.

[9] M. Appleton. A short history of bi-directional links. https://
maggieappleton.com/bidirectionals.

[10] Z. Bar-Yossef, A. Z. Broder, R. Kumar, and A. Tomkins. Sic transit
gloria telae: Towards an understanding of the web’s decay. In WWW,
2004.

[11] A. Broder. A taxonomy of web search. In ACM Sigir forum. ACM New
York, NY, USA.

[12] A. Carzaniga and A. L. Wolf. Content-based networking: A new com-
munication infrastructure. InWorkshop on Infrastruture for Mobile and
Wireless Systems, 2001.

[13] R. P. Dellavalle, E. J. Hester, L. F. Heilig, A. L. Drake, J. W. Kuntzman,
M. Graber, and L. M. Schilling. Going, going, gone: Lost internet

references. Science, 2003.
[14] M. Graham. Turn all references blue. https://archive.org/details/mark-

graham-presentation.
[15] S. M. Jones, H. Van de Sompel, H. Shankar, M. Klein, R. Tobin, and

C. Grover. Scholarly context adrift: Three out of four URI references
lead to changed content. PloS one, 2016.

[16] M. Klein, H. Van de Sompel, R. Sanderson, H. Shankar, L. Balakireva,
K. Zhou, and R. Tobin. Scholarly context not found: One in five articles
suffers from reference rot. PloS one, 9(12):e115253, 2014.

[17] T. A. Phelps and R. Wilensky. Robust hyperlinks cost just five words
each. University of California, Berkeley, Computer Science Division,
2000.

[18] S. Rhodes. Breaking down link rot: The chesapeake project legal
information archive’s examination of url stability. Law Library Journal,
2010.

[19] D. Spinellis. The decay and failures of web references. Communications
of the ACM, 46(1):71–77, 2003.

[20] T. Urban, M. Degeling, T. Holz, and N. Pohlmann. Beyond the front
page: Measuring third party dynamics in the field. In WWW, 2020.

[21] J. Zittrain, K. Albert, and L. Lessig. Perma: Scoping and addressing the
problem of link and reference rot in legal citations. Legal Information
Management, 14(2):88–99, 2014.

[22] J. L. Zittrain, J. Bowers, and C. Stanton. The paper of record meets an
ephemeral web: An examination of linkrot and content drift within
the new york times. Available at SSRN 3833133, 2021.

[23] J. L. Zittrain, J. Bowers, and C. Stanton. The paper of record meets an
ephemeral web: An examination of linkrot and content drift within
the new york times. Available at SSRN 3833133, 2021.

https://github.com/chromium/dom-distiller
https://github.com/chromium/dom-distiller
https://ejs.co/
https://trends.google.com/trends/
https://www.archive.org/about/
https://www.loc.gov/web-archives/
https://blog.archive.org/2018/10/01/more-than-9-million-broken-links-on-wikipedia-are-now-rescued/
https://blog.archive.org/2018/10/01/more-than-9-million-broken-links-on-wikipedia-are-now-rescued/
https://perma.cc/
https://maggieappleton.com/bidirectionals
https://maggieappleton.com/bidirectionals
https://archive.org/details/mark-graham-presentation
https://archive.org/details/mark-graham-presentation

	Abstract
	1 Introduction
	2 Problems with status quo
	3 Envisioned approach
	4 Research challenges and potential solutions
	4.1 Re-discovering pages after site reorganizations
	4.2 Detect content drift for different page types
	4.3 Integration with the modern web stack

	5 Conclusions
	References

